Bracket Products for Weyl-heisenberg Frames

نویسنده

  • PETER G. CASAZZA
چکیده

Abstract. We provide a detailed development of a function valued inner product known as the bracket product and used effectively by de Boor, Devore, Ron and Shen to study translation invariant systems. We develop a version of the bracket product specifically geared to Weyl-Heisenberg frames. This bracket product has all the properties of a standard inner product including Bessel’s inequality, a Riesz Representation Theorem, and a Gram-Schmidt process which turns a sequence of functions (gn) into a sequence (en) with the property that (Emben)m,n∈Z is orthonormal in L (R). Armed with this inner product, we obtain several results concerning WeylHeisenberg frames. First we see that fiberization in this setting takes on a particularly simple form and we use it to obtain a compressed representation of the frame operator. Next, we write down explicitly all those functions g ∈ L(R) and ab = 1 so that the family (EmbTnag) is complete in L(R). One consequence of this is that for functions g supported on a half-line [α,∞) (in particular, for compactly supported g), (g, 1, 1) is complete if and only if sup0≤t<a|g(t − n)| 6 = 0 a.e. Finally, we give a direct proof of a result hidden in the literature by proving: For any g ∈ L(R), A ≤ ∑ n |g(t − na)|2 ≤ B is equivalent to (Em/ag) being a Riesz basic sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plancherel transform criteria for Weyl-Heisenberg frames with integer oversampling

We investigate the relevance of admissibility criteria based on Plancherel measure for the characterization of tight Weyl-Heisenberg frames with integer oversampling. For this purpose we observe that functions giving rise to such Weyl-Heisenberg frames are admissible with regard to the action of a suitably defined type-I discrete group G. This allows to relate the construction of Weyl-Heisenber...

متن کامل

An Introduction to Irregular Weyl-Heisenberg Frames

We give an introduction to irregular Weyl-Heisenberg frames showing the latest developments and open problems. We provide several new results for semiirregular WH-frames as well as giving new and more accessable proofs for several results from the literature.

متن کامل

A Discrete Zak Transform

A discrete version of the Zak transform is defined and used to analyze discrete Weyl–Heisenberg frames, which are nonorthogonal systems in the space of square-summable sequences that, although not necessarily bases, provide representations of square-summable sequences as sums of the frame elements. While the general theory is essentially similar to the continuous case, major differences occur w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008